Метаболизм в организме человека и качество жизни



Все когда-то учились в школе и слышали, что такое метаболизм организма, но не всегда задумывались серьезно о том, как важны эти знания. Каждый хочет быть стройным и подтянутым, похудеть, или поправиться.

Оглавление:

Для этого изучили массу диет, прочитали не один трактат, испробовали все на себе, но…желаемого результата нет. Почему? Забыли о таком главном дирижере нашего организма, как метаболизм.

Что такое метаболизм

Метаболизм (обмен веществ) – химические реакции, ежесекундно, ежечасно протекающие в организме человека. Обмен веществ – процесс непрерывный, и его условно разделяют на анаболизм и катаболизм.

Анаболизм (биологический синтез) – процесс образования сложных веществ из более простых компонентов, которые поступают в организм человека в составе пищи. Что синтезируют клетки, какие вещества? Всего не перечислить, но основные – белки, углеводы, жиры, нуклеиновые кислоты, АТФ (клеточный источник энергии).

Катаболизм (обмен энергетический) – совокупность химических реакций разложения органических веществ до более простых, высвобождение из них химической энергии, часть которой превращается в тепловую, часть расходуется на образование энергетического вещества (АТФ). Эти два процесса тесно связаны между собой, не могут существовать друг без друга, как день и ночь.

Этапы метаболизма

  1. Подготовительный. Происходит в пищеварительной системе. В различных отделах пищеварительной системы происходит выделение из пищи питательных веществ, расщепление при участии пищеварительных соков, всасывание в кровь. С кровотоком эти вещества движутся в клетки организма, в которых происходят их химические преобразования.
  2. Из аминокислот (продуктов расщепления белковой пищи) в клетках синтезируются белки. Из глюкозы – разнообразные углеводы. Из глицерина и жирных кислот образуются жиры. Все это многообразие веществ используется клетками для построения структурных частиц клетки, роста, развития человека.
  3. Часть питательных веществ окисляется (вот для чего нужен кислород) с образованием энергетического вещества АТФ. Клетки организма могут усваивать химическую энергию, запасенную только в этих молекулах.

Нарушение обмена веществ

Часто можно услышать от человека, страдающего ожирением, или, наоборот, худобой, что у него в организме нарушен обмен веществ. Скорее всего, первичным у большинства людей является неправильный образ жизни, нарушение правил рационального питания, что и вызвало нарушение обмена веществ. Нарушенный обмен веществ часто становится причиной серьезных проблем в работе организма.

Основные причины нарушения метаболизма:


  • неблагоприятная наследственность;
  • эндокринные проблемы;
  • неправильный, пагубный образ жизни.

Что влияет на скорость обмена веществ

Ускоренный или замедленный метаболизм зависит от ряда факторов:

  • пола, возраста человека;
  • веса тела, количества накопленной жировой ткани;
  • хронических патологий.

Интенсивность и качество метаболизма сказывается на работе всего организма, внешний вид человека, его психоэмоциональное состояние.

Что нарушает метаболизм

  • ограничение рациона и низкокалорийная пища;
  • недостаток в пище витаминов и основных питательных компонентов;
  • неправильный режим питания;
  • малоподвижный, сидячий образ жизни;
  • нарушение водного баланса.

Что ускорит метаболизм

  1. Не ограничивать резко свой рацион, чередовать калорийную пищу с низкокалорийной. Не вгонять свой организм в стрессовое состояние, при котором он будет посылать сигналы головному мозгу о наступлении голода и необходимости запасать питательные вещества. А запасаться в организме, замедляя обменные процессы, может только жир. Ограничить, или вообще исключить из рациона нужно алкогольные напитки и вредные для организма вещества, например, табак, ненатуральную пищу.
  2. Запустить и ускорить обменные процессы можно питанием дробными порциями. Дробное питание способствует постоянному перевариванию пищи, на что затрачивается большое количество энергии, а, значит, не грозит образованием жировых запасов.
  3. Чтобы ускорить и улучшить обменные процессы, важно вести активный, подвижный образ жизни: сердце работает интенсивнее, больше приливает крови и кислорода к органам, что дает возможность усилить химические процессы расщепления, сгорания жиров. Полезно посещение сауны.
  4. Ускорить и улучшить обмен веществ помогут витамины и микроэлементы качественной пищи. В некоторых случаях полезны пищевые добавки, поливитамины, но употреблять их можно только после консультации с диетологом или врачом.
  5. Вода необходима для протекания химических реакций в клетках тканей и органов. Если увеличить количество воды, выпивать за сутки до двух литров, то такое ее количество поможет улучшить клеточные обменные процессы в организме.
  6. Важен полноценный сон. Медиками давно подмечено: уменьшение времени сна отрицательно сказывается на работе организма. Продолжительность ночного отдыха у каждого человека индивидуальна, но не менее 6-7 часов. Важно ложиться отдыхать до полуночи.
  7. Ускорить, улучшить обмен веществ поможет полноценный, качественный завтрак, иначе организм не сможет проснуться до самого обеда. Завтрак поможет повысить жизненный тонус, придаст силы, увеличит активность человека, что, в свою очередь, даст возможность ускорить обменные процессы, улучшить качество жизни.
  8. Негативно сказываются на организме стрессы, депрессии. Они могут не то что повысить обмен веществ, а, наоборот, его замедлить. К тому же стрессы часто заедаются сладостями, булочками, пирожными, шоколадками, что совсем не полезно, может увеличить вес.

Продукты для ускорения обмена веществ

Желательно, чтобы на столе были такие продукты питания:

  • мясо и белковые продукты, яйца, рыба (скумбрия, форель, лосось, семга);
  • овсяные хлопья и фрукты, цитрусовые, имбирь;
  • творог, кефир, нежирные йогурты;
  • специи (корица, пряные травы), перец чили;
  • водоросли и морепродукты.

Жирные кислоты, содержащиеся в рыбе, способствуют выработке гормона, влияющего на скорость реакций. Белки – главный строительный материал, основа ферментов, отвечающих за активность химических реакций.

Значение метаболизма

Анаболизм и катаболизм (метаболизм) – основное свойство любой живой системы, с их остановкой прекращается жизнь. От скорости этих реакций зависят:


  • баланс расхода энергии, поступающей с пищей;
  • интенсивность кровообращения и состояние иммунной системы;
  • гормональный фон.

Если произошло такое нарушение метаболизма, важно пройти обследование, исключить заболевания эндокринной системы, наследственную патологию. Важно помнить, что увеличить скорость обменных процессов в организме можно при правильном режиме питания, сна, бодрствования, двигательной активности.

Источник: http://receptdolgolet.ru/organizm/chto-takoe-metabolizm.html

Метаболизм. Катаболизм. Анаболизм. Стадии.

— совокупность многочисленных химических реакций, протекающих в организмах, благодаря которым осуществляется их рост, жизнедеятельность, воспроизводство, постоянный контакт и обмен с окружающей средой. Главная его задача — обеспечить живые системы энергией за счет окисления пищевых веществ. Кроме того, их молекулы используются в качестве исходного «сырья» для создания жизненно необходимых компонентов клетки. Ненужные организму структуры преобразуются в основном в хорошо растворимые в воде соединения, которые могут быть легко выведены (с мочой, калом, потом, слюной, выдыхаемым воздухом). Метаболизм любых отдельно взятых веществ (углеводов, липидов, нуклеотидов и т.д.) складывается из двух фаз: анаболической и катаболической.

Анаболизм

(anabole – подъем) – синтез соединений из более простых молекул, причем его этапы протекают с затратой энергии и восстановительных эквивалентов. Реже эта фаза для вещества ограничивается лишь поступлением его в клетку из внешней среды (незаменимые аминокислоты).

Катаболизм

(katabole – сбрасывание вниз, спуск) представляет комплекс химических реакций распада соединений. Для некоторых эта фаза метаболизма включает только их выведение из организма (билирубин, холестерин). Интересно, что многие стадии катаболизма представляют из себя окисление, сопровождающееся выделением свободной энергии и запасанием ее в виде макроэргических веществ и использованием в различных процессах жизнедеятельности.



Благодаря локализации ферментов разных фаз метаболизма в специфических компартментах (отсеках, органеллах) клеток противоположно направленные процессы протекают одновременно, причем многие из них взаимосвязаны: продукты катаболизма часто служат субстратами в этапах синтеза, а энергия, высвобождающаяся при распаде, необходима для реакций анаболизма и т.д. Процессы, с помощью которых обеспечивается взаимосвязь между фазами метаболизма, называются амфиболическими. Нормальная жизнедеятельность организма обеспечивается динамическим равновесием между разными фазами метаболизма (Табл. 3.1), что служит яркой иллюстрацией закона единства и борьбы противоположностей.

Основные особенности разных фаз метаболизма

Получение низкомолекулярных соединений из высокомолекулярных

Образование высокомолекулярных соединений из низкомолекулярных

В процессе катаболизма выделяют три стадии

I – Гидролитическая (пищеварительная). На данном этапе макромолекулы (белки, нуклеиновые кислоты, сложные углеводы, липиды) распадаются путем гидролиза на свои основные строительные блоки: полипептиды до аминокислот, полисахариды до моносахаридов, нейтральные жиры до глицерола и ВЖК. Процесс может локализоваться вне (распад пищевых крупных мицелл в ЖКТ), а также протекать внутри клеток, если гидролизуются подобные структуры эндогенного происхождения. Для этой стадии практически не характерны экзергонические (с выделением энергии) реакции.



II – Специфический распад – продукты первого этапа с помощью специфических ферментов распадаются до ПВК или ацетил-КоА. Гексозы, пентозы, глицерин, гликогенные аминокислоты расщепляются до ПВК, 2-оксоглутарата, сукцината, оксалоацетата – метаболитов ЦТК. Для ВЖК и кетогенных аминокислот эта стадия завершается образованием ацетилКоА и некоторых других соединений. Часть реакций является экзергоническими, при их течении высвобождается до трети заложенной в веществах энергии.

III – Неспецифический распад представляет окончательное разрушение всех немногочисленных по химической природе продуктов II стадии до СО2, Н2О. Этот этап включает окислительное декарбоксилирование ПВК, ЦТК, сопряженные с ними биологическое окисление и окислительное фосфорилирование. Заключительная стадия катаболизма служит основным поставщиком энергии: в ходе реакций высвобождается до 2/3 от всей заложенной в соединениях энергии. Учитывая взаимосвязь между фазами метаболизма логично предположить, что анаболизм тоже включает 3 стадии, отличающиеся тем, что они идут в противоположном направлении, обычно протекают в других компартментах клетки, а часть реакций в силу их энергозависимости проходит другим путем.

Источник: http://alexmed.info/2016/05/14/586/

Этапы метаболизма

10.2.1. Этапы обмена веществ

Для возмещения энергозатрат организма, сохранения массы тела и удовлетворения потребностей роста необходимо поступление из внешней среды белков, жиров и углеводов, витаминов, минеральных солей, воды. Их количество, свойства и соотношение должны соответствовать состоянию организма и условиям его существования.



Обмен веществ начинается с поступления питательных веществ в желудочно-кишечный тракт и воздуха в легкие.

Первым этапом обмена веществ являются ферментативные процессы расщепления белков, жиров и углеводов до растворимых в воде аминокислот, моно- и дисахаридов, глицерина, жирных кислот и других соединений. Данный этап также связан с всасыванием этих веществ в кровь и лимфу.

Вторым этапом обмена является химические реакции синтеза ферментов, гормонов, составных частей цитоплазмы и выделение энергии.

Третьим этапом является удаление конечных продуктов распада и выведение их почками, легкими, потовыми железами и кишечником.

Превращение белков, жиров, углеводов, минеральных веществ и воды происходит в тесном взаимодействии друг с другом. При этом в метаболизме каждого из них имеются свои особенности, а физио­логическое значение их различно.

Источник: http://koi.tspu.ru/koi_books/tomova3/yourov.htm

Обмен веществ: виды и этапы метаболизма.

Метаболизм («превращение, изменение»), обмен веществ — полный процесс превращения химических веществ в организме, обеспечивающих его рост, развитие, деятельность и жизнь в целом. В живом организме постоянно расходуется энергия, причём не только во время физической и умственной работы, но и при полном покое (сне).

Обмен веществ представляет собой комплекс биохимических и энергетических процессов, обеспечивающих использование пищевых веществ для нужд организма и удовлетворения его потребностей в пластических и энергетических веществах.

Условно процесс обмена веществ можно разделить на три этапа:

Первый этап — ферментативное расщепление белков, жиров и углеводов до растворимых в воде аминокислот, моно- и дисахаридов, глицерина, жирных кислот и других соединений, происходящее в различных отделах желудочно-кишечного тракта, и всасывание их в кровь и лимфу.



Второй этап — транспорт питательных веществ с кровью к тканям и клеточный метаболизм, результатом которого является их ферментативное расщепление до конечных продуктов. Часть этих продуктов используется для построения составных частей мембран, цитоплазмы, для синтеза биологически активных веществ и воспроизведения клеток и тканей. Расщепление веществ сопровождается выделением энергии, которая используется для процесса синтеза и обеспечения работы каждого органа и организма в целом.

Третий этап — выведение конечных продуктов метаболизма в составе мочи, кала, пота, через легкие в виде CO2 и т. д.

Обмен веществ состоит из двух противоположных, одновременно протекающих процессов.

Первый — анаболизм — объединяет все реакции, связанные с синтезом необходимых веществ, их усвоением и использованием для роста, развития и жизнедеятельности организма.

Второй — катаболизм — включает реакции, связанные с распадом веществ, их окислением и выведением из организма продуктов распада .



Главным образом через реакции анаболизма протекает процесс ассимиляции (усвоения) питательных веществ, а реакции катаболизма составляют основу диссимиляции — освобождения организма от веществ, его составляющих (употребление терминов «ассимиляция» как синонима анаболизма, а «диссимиляция» — синонима катаболизма некорректно, так как они являются более общими биологическими понятиями).

Обмен веществ обеспечивает присущее живому организму как системе динамическое равновесие, при котором взаимно уравновешиваются синтез и разрушение, размножение и гибель. В основе реакций обмена веществ лежат физико-химические взаимодействия между атомами и молекулами, подчиняющиеся единым для живой и неживой материи законам. Сказанное означает, что сама возможность существования жизни, в первооснове своей, сводится к элементарным актам физико-химических процессов. Но живым организмам присущи свои особенности.

С обменом веществ неразрывно связан обмен энергии в организме. Живые организмы могут существовать только при условии непрерывного поступления энергии извне. Поэтому они постоянно нуждаются в энергии для выполнения различного рода работы: механической — передвижение тела, сердечная деятельность и т. д.; гальванической — создание разности потенциалов в тканях и клетках; химической — синтез веществ и т. д.

Первичным источником энергии для всего живого на Земле, за очень редким исключением, служит солнечное излучение. Пища образуется благодаря той же энергии Солнца. Начальное звено пищевой цепи — растения, аккумулирующие в процессе фотосинтеза солнечную энергию. В зелёном пигменте растений — хлорофилле — под воздействием квантов света из воды и углекислого газа синтезируются органические вещества — основа жизни.

Состав пищи сложен и разнообразен. В ней больше всего главных пищевых веществ, к которым относятся белки, жиры, углеводы. Содержатся в пище и минеральные элементы — макроэлементы кальций, фосфор, натрий и др., микроэлементы медь, кобальт, йод, цинк, марганец, селен и др. Есть и вкусовые вещества, которые придают ей особые свойства.



3. Образование, накопление и расход энергии, обеспечивающей жизнедеятельность организма.

Энергия в организме образуется непрерывно. Все виды энергии превращаются в тепловую энергию. В процессе жизнедеятельности организма энергия не только образуется, но и непрерывно расходуется. Отношение поступающей в организм энергии к расходуемой называют энергетическим балансом. Обмен энергии – это превращение потенциальной энергии питательных веществ в тепло и работу. Интенсивность энергетического обмена зависит от условий, в которых находится организм. Организму постоянно приходится расходовать энергию, необходимую для поддержания работы мозга, температуры тела, деятельности сердца, легких и других органов, работа которых при жизни не прекращается ни при каких условиях. Расход энергии зависит от интенсивности процессов обмена в организме, мощности, длительности работы, а также от пола, возраста, роста, веса тела, климатических и жилищных условий, питания, одежды. Потребность человека в пище (а значит в энергии) существенно меняется в различные периоды жизни с изменениями физиологических функций и обмена веществ в организме.

Все взрослое трудоспособное население (от 18 до 60 лет) в зависимости от характера труда делят на 5 групп видов трудовой деятельности (с увеличением группы увеличивается энергия):

I группа – работники преимущественно умственного труда ок.2500 (очень легкая физическая активность);

II – люди, занятые легким трудом ок.2700 (легкая физическая активность);



III – работники, занятые трудом средней тяжести ок.3000 (средняя физическая активность);

IV – люди, занятые тяжелым физическим трудом ок.3500 (высокая физическая активность);

V – мужчины, занятые особо тяжелым физическим трудом ок.4000 (очень высокая физическая активность).

4. Суточная потребность организма в энергии, способ приближенной оценки.

Энергия человека в течении суток расходуется по трем направлениям:



1-основной обмен (деятельность внутренних органов в состоянии покоя),

2- переваривание пищи,

3- различные виды деятельности.

Энергетические траты человека принято выражать в единицах измерения калориях (ккал) или Дж (кДж). Уровень энергозатрат изменяется в зависимости от характера работы человека, состояния ОС (в холодную погоду энергозатраты возрастают), состава пищи и индивидуальных особенностей человека ( массы тела, возраст и пр.).

Согласно действующим в России «Нормам физиологических потребностей в пищевых веществах и энергии для различных групп населения» (разработанным Институтом питания РАМН и утвержденным Минздравом РФ в 1991 г.), все взрослое трудоспособное население (от 18 до 60 лет) в зависимости от характера труда делят на 5 групп видов трудовой деятельности:



I группа – работники преимущественно умственного труда (очень легкая физическая активность);

II – люди, занятые легким трудом (легкая физическая активность);

III – работники, занятые трудом средней тяжести (средняя физическая активность);

IV – люди, занятые тяжелым физическим трудом (высокая физическая активность);

V – мужчины, занятые особо тяжелым физическим трудом (очень высокая физическая активность). Каждая из групп разделена на 3 категории:лет,лет,лет. Кроме того, предусмотрена половая дифференциация, обусловленная меньшей величиной массы тела и менее интенсивным обменом веществ у женщин по сравнению с мужчинами.



Существуют следующие способы приближенной оценки:

1. С помощью номограммы (рост, вес – поверхность тела), вычисляем по формуле суточный расход энергии.

2. С помощью табличного метода (по категориям в зависимости от труда)

3. С помощью статистических исследований рассчитывают суточную потребность организма, для определенной профессий.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.



Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

© cyberpedia.su — Не является автором материалов. Исключительное право сохранено за автором текста.

Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

Источник: http://cyberpedia.su/14x19a8.html



В чем заключается метаболизм?

Метаболизм представляет собой высоко координированную и целенаправленную клеточную активность, обеспеченную участием многих взаимосвязанных ферментативных систем, и включает два неразрывных процесса анаболизм и катаболизм .

Он выполняет три специализированные функции:

  1. Энергетическая – снабжение клетки химической энергией,
  2. Пластическая – синтез макромолекул как строительных блоков,
  3. Специфическая – синтез и распад биомолекул, необходимых для выполнения специфических клеточных функций.

Анаболизм

Анаболизм – это биосинтез белков, полисахаридов, липидов, нуклеиновых кислот и других макромолекул из малых молекул-предшественников. Поскольку он сопровождается усложнением структуры, то требует затрат энергии. Источником такой энергии является энергия АТФ.

Цикл НАДФ-НАДФН

Также для биосинтеза некоторых веществ (жирные кислоты, холестерол) требуются богатые энергией атомы водорода – их источником является НАДФН. Молекулы НАДФН образуются в реакциях окисления глюкозо-6-фосфата в пентозном пути и оксалоацетата малик-ферментом. В реакциях анаболизма НАДФН передает свои атомы водорода на синтетические реакции и окисляется до НАДФ. Так формируется НАДФ-НАДФН-цикл.

Катаболизм

Катаболизм – расщепление и окисление сложных органических молекул до более простых конечных продуктов. Оно сопровождается высвобождением энергии, заключенной в сложной структуре веществ. Большая часть высвобожденной энергии рассеивается в виде тепла. Меньшая часть этой энергии «перехватывается» коферментами окислительных реакций НАД и ФАД , некоторая часть сразу используется для синтеза АТФ.



Следует заметить, что атомы водорода, высвобождаемые в реакциях окисления веществ, могут использоваться клеткой только по двум направлениям:

  • на анаболические реакции в составе НАДФН .
  • на образование АТФ в митохондриях при окислении НАДН и ФАДН 2 .

Весь катаболизм условно подразделяется на три этапа:

I этап

Происходит в кишечнике (переваривание пищи) или в лизосомах при расщеплении уже ненужных молекул. При этом освобождается около 1% энергии, заключенной в молекуле. Она рассеивается в виде тепла.

II этап

Вещества, образованные при внутриклеточном гидролизе или проникающие в клетку из крови, на втором этапе обычно превращаются в пировиноградную кислоту, ацетильную группу (в составе ацетил-S-КоА) и в некоторые другие мелкие органические молекулы. Локализация второго этапа – цитозоль и митохондрии.

Часть энергии рассеивается в виде тепла и примерно 13% энергии вещества усваивается, т.е. запасается в виде макроэргических связей АТФ.


Схема общих и специфичных путей катаболизма

III этап

Все реакции этого этапа идут в митохондриях. Ацетил-SКоА включается в реакции цикла трикарбоновых кислот и окисляется до углекислого газа. Выделенные атомы водорода соединяются с НАД и ФАД и восстанавливают их. После этого НАДН и ФАДН2 переносят водород в цепь дыхательных ферментов, расположенную на внутренней мембране митохондрий. Здесь в результате процесса под названием » окислительное фосфорилирование » образуется вода и главный продукт биологического окисления – АТФ.

Часть выделенной на этом этапе энергии молекулы рассеивается в виде тепла и около 46% энергии исходного вещества усваивается, т.е. запасается в связях АТФ и ГТФ.

Роль АТФ

Энергия, высвобождаемая в реакциях катаболизма, запасается в виде связей, называемых макроэргическими. Основной и универсальной молекулой, которая запасает энергию и при необходимости отдает ее, является АТФ .

Все молекулы АТФ в клетке непрерывно участвуют в каких-либо реакциях, постоянно расщепляются до АДФ и вновь регенерируют.

Существует три основных способа использования АТФ

  • биосинтез веществ,
  • транспорт веществ через мембраны,
  • изменение формы клетки и ее движение.

Эти процессы вкупе с процессом образования АТФ получили название АТФ-цикл :


Кругооборот АТФ в жизни клетки
Вы можете спросить или оставить свое мнение.

Источник: http://biokhimija.ru/obshhwie-puti-katabolizma/metabolism

Этапы метаболизма

Условно процесс обмена веществ можно разделить на три этапа:

Первый этап — ферментативное расщепление белков, жиров и углеводов до растворимых в воде аминокислот, моно- и дисахаридов, глицерина, жирных кислот и других соединений, происходящее в различных отделах желудочно-кишечного тракта, и всасывание их в кровь и лимфу.

Второй этап — транспорт питательных веществ с кровью к тканям и клеточный метаболизм, результатом которого является их ферментативное расщепление до конечных продуктов. Часть этих продуктов используется для построения составных частей мембран, цитоплазмы, для синтеза биологически активных веществ и воспроизведения клеток и тканей. Расщепление веществ сопровождается выделением энергии, которая используется для процесса синтеза и обеспечения работы каждого органа и организма в целом.

Третий этап — выведение конечных продуктов метаболизма в составе мочи, кала, пота, через легкие в виде CO2 и т. д.



Обмен веществ состоит из двух противоположных, одновременно протекающих процессов.

Первый — анаболизм — объединяет все реакции, связанные с синтезом необходимых веществ, их усвоением и использованием для роста, развития и жизнедеятельности организма.

Второй — катаболизм — включает реакции, связанные с распадом веществ, их окислением и выведением из организма продуктов распада .

Главным образом через реакции анаболизма протекает процесс ассимиляции (усвоения) питательных веществ, а реакции катаболизма составляют основу диссимиляции — освобождения организма от веществ, его составляющих (употребление терминов «ассимиляция» как синонима анаболизма, а «диссимиляция» — синонима катаболизма некорректно, так как они являются более общими биологическими понятиями).

Источник: http://studopedia.ru/8_84045_etapi-metabolizma.html

2.Обмен веществ: виды и этапы метаболизма.

Внешняя среда является источником энергетических ресурсов в виде пищи. Компоненты пищи, поступают в организм человека в виде белков, жиров, углеводов и т.д. преобразуются в более мелкие структуры, с высвобождением энергии. Этот процесс называется диссимиляцией. Затем, эти структуры вместе с кровью и лимфой поступают в клетки, ткани и органы, где происходит процесс ассимиляции, т.е. их объединение в более крупные элементы. Совокупность процессов ассимиляции и диссимиляции называется обменом веществ или метаболизмом. Метаболизм начинается с момента всасывания в кровь (в тонком кишечнике). Энергия, освобождающаяся в процессе диссимиляции, служит для выполнения клеткой различных функций: процессов биосинтеза, механической работы, клеточного деления, активного транспорта в-в, осуществления биоэлектрических процессов.

Сущ-ет основной обмен в-в и основной фоновый обмен в-в. Основной обмен в-в — это кол-во энергии, к/е необх-мо для обеспечения непрерывного функционирования организма ч-ка (в состоянии покоя натощак при температуре окружающей среды 16-18С). Основной фоновый обмен в-в – это такое кол-во энергии, к/е определяется харак-ом выполняемой работы. Т.е. интенсивность процессов метаболизма в состоянии покоя и при условиях, требующих от организма повышенной активности, резко отличаются. У взрослого человека средней массы тела и роста основной обмен составляет ккал/сут, а в расчете на 1 м² поверхности тела — около 900 ккал/сут. Энергетические затраты организма в состоянии покоя идут на поддержание уровня метаболизма, необходимого для работы дыхательной мускулатуры, сердца, мышечного тонуса, почек, печени и т.д., а также поддержание температуры тела. На величину основного обмена оказывают влияние различные факторы. Интенсивность окислительных процессов в организме находится в зависимости от индивидуальных особенностей и состояния организма – пола, возраста, веса тела, роста, условий питания, мышечной работы, состояния эндокринной и нервной систем. На величину обмена в-в влияют условия внешней среды – температура, барометрическое давление, влажность воздуха. Основной обмен резко нарушается при повреждении центров вегетативной нервной системы промежуточного мозга. Велика роль гормонов щитовидной железы. Они регулируют интенсивность окислительно-восстановительных процессов в организме благодаря влиянию на митохондрии. Выраженным стимулирующим действием на основной обмен обладает адреналин. Его влияние особенно заметно в условиях стрессовых воздействий. Инсулин обладает действием, противоположным адреналину. Он ослабляет мышечную дрожь. Половые гормоны – тестостерон и прогестерон – активизируют процессы окисления и способствуют образованию энергии.

Белковый обмен. Среди органических в-в клетки белки стоят на первом месте как по кол-ву (10-12 от общей массы клетки), так и по значению. Белки представляют собой высокомолекулярные полимеры, мономерами кот являются аминокислоты. Живыми организмами используется 20 аминокислот. Функции белков чрезвычайно многообразны. Функции белков: одна из важнейших – строительная – белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внеклеточных структур, двигательная обеспечивается специальными сократительными белками, транспортная заключается в переносе гемоглобином кислорода, защитная выражается в форме выработки особых белков – гаммаглобулинов, кот являются антителами, они соединяются с антигенами и выполняют иммунную функцию, энергетическая – при полном расщеплении 1г белка выделяется 4,2 ккал.

Обмен жиров. Общее кол-во жира в организме колеблется и в среднем составляет 10-20 веса тела, а в случае ожирения может достигать 50.Большая часть жиров в организме находится в жировой ткани, а меньшая в составе клеточных мембран. Жировая ткань не является лишь пассивным накопителем жира, в ней происходят интенсивные процессы обмена в-в. Жиры выполняют в организме разнообразные функции. Очень важна энергетическая функция жира. Помимо этого он выполняет строительную функцию, входя в состав клеточных мембран. Благодаря плохой теплопроводности жир выполняет теплоизоляционную функцию.

Углеводный обмен. Углеводы делятся на 3 основных класса – моносахариды, дисахариды, полисахариды. Моносахариды важны как источник энергии. Наибольшее биологическое значение имеют такие полисахариды как гликоген, крахмал, целлюлоза, хитин. При отсутствии в пище углеводов они могут образовываться из жиров и белков.

Для продолжения скачивания необходимо собрать картинку:

Источник: http://studfiles.net/preview//page:2/

Этапы метаболизма

и подростковая гинекология

и доказательная медицина

и медицинскому работнику

Первые (аутотрофы) — прежде всего зеленые растения, способные непосредственно использовать лучистую энергию Солнца в процессе фотосинтеза, создавая органические соединения (углеводы, аминокислоты, жирные кислоты и др.) из неорганических. Остальные живые организмы ассимилируют уже готовые органические вещества, используя их как источник энергии или пластического материала для построения своего тела.

Следует отметить, что большинство микроорганизмов тоже являются гетеротрофами. Однако они не способны поглощать целые пищевые частицы. Они выделяют в окружающую их среду специальные переваривающие ферменты, которые расщепляют пищевые вещества, превращая их в малые, растворимые молекулы, а уже эти молекулы проникают в клетки.

В результате обмена веществ потребляемые с пищей вещества превращаются в собственные вещества и структуры клетки и, кроме того, организм обеспечивается энергией для совершения внешней работы.

Самовоспроизведение, т. е. постоянное обновление структур организма и размножение, — наиболее характерная особенность обмена веществ в живых организмах, отличающая его от обмена веществ в неживой природе.

Обмен веществ, неразрывно связанный с обменом энергии — это закономерный порядок превращения вещества и энергии в живых системах, направленный на их сохранение и самовоспроизведение. Ф. Энгельс важнейшим свойством жизни отмечал обмен веществ, с прекращением которого прекращается сама жизнь. Он подчеркивал диалектический характер этого процесса и указывал, что

Энгельс Ф. Диалектика природы. —

В кн.: Маркс К. и Энгельс Ф. Соч., 2-е изд., т. 20, с. 529.

С последовательно материалистических позиций рассматривал роль обмена веществ в жизни организмов основоположник отечественной физиологии И. М. Сеченов. К. А. Тимирязев последовательно проводил идею о том, что основное свойство, которое характеризует живые организмы, заключается в постоянном деятельном обмене между веществом, составляющим организм, и веществом окружающей среды, которое организм постоянно воспринимает, ассимилирует, превращает его в себе подобное, вновь изменяет и выделяет в процессе диссимиляции. И. П. Павлов рассматривал обмен веществ как основу проявления жизнедеятельности, как основу физиологических функций организма. Существенный вклад в познание химизма жизненных процессов сделал А. И. Опарин, который изучал основные закономерности эволюции обмена веществ в ходе возникновения и развития жизни на Земле.

ОСНОВНЫЕ ПОНЯТИЯ И ТЕРМИНЫ

Обмен веществ, или метаболизм, — это совокупность химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности: самосохранения и самовоспроизведения. Под самовоспроизведением понимают превращение вещества, поступающего извне, в вещества и структуры самого организма, в результате чего происходит непрерывное обновление тканей, рост и размножение.

В обмене веществ выделяют:

  • внешний обмен — включает внеклеточное превращение веществ на путях их поступления в организм и выведения продуктов метаболизма из него [показать] .

Поступление веществ в организм и выделение продуктов метаболизма в совокупности составляет обмен веществами между средой и организмом, и определяется как внешний обмен.

Внешний обмен веществами (и энергией) осуществляется постоянно.

В организм человека из внешней среды поступает кислород, вода, минеральные соли, питательные вещества, витамины, необходимые для построения и обновления структурных элементов клеток и тканей, и образования энергии. Все эти вещества можно назвать продуктами питания, одни из которых имеют биологическое происхождение (растительные и животные продукты) и меньшая часть небиологическое (вода и растворенные в ней минеральные соли).

Поступающие с пищей питательные вещества подвергаются распаду с образованием аминокислот, моносахаридов, жирных кислот, нуклеотидов и других веществ, которые смешиваясь с такими же вещствами, образующимися в процессе непрерывного распада структурно-функциональных компонентов клетки, составляют общий фонд метаболитов организма. Этот фонд расходуется по двум направлениям: часть используется для возобновления распавшихся структурно-функциональных компонентов клетки; другая часть превращается в конечные продукты обмена веществ, которые выводятся из организма.

При распаде веществ до конечных продуктов обмена освобождается энергия, у взрослого человека000 кДж ккал) в сутки. Эта энергия используется клетками организма для совершения разного рода работы, а также для поддержания температуры тела на постоянном уровне.

Этапы обмена веществ. Выделяют три последовательных этапа.

  1. поступление веществ из среды в организм (в результате питания, дыхания), их переваривание — приведение к состоянию, в котором они могут проникнуть во внутреннюю среду и, собственно всасывание
  2. перемещения и превращения, которым подвергаются всосавшиеся вещества в толще слизистой тонкого кишечника или после транспортировки в ткани. Данный этап нередко обозначали как промежуточный обмен, а в последнее время именно этот этап называют метаболизмом.

Это наиболее сложная часть обмена веществ, которая включает молекулярные процессы, представляющие физико-химические взаимодействия на основе комплементарных поверхностей (центров связывания) [показать] .

Молекулярные процессы промежуточного обмена

  1. Взаимодействие молекул без изменения их ковалентной структуры: образование олигомерных белков из протомеров; самосборка клеточных органелл, включая мембраны; образование двойной спирали ДНК; присоединение аминоацил-тРНК к мРНК и рибосомам; присоединение аллостерических эффекторов к регуляторным центрам ферментов; присоединение кислорода к гемоглобину и др. Все эти взаимодействия представляют собой физико-химические процессы. Это послужило основанием тому, что отрасль биохимии, изучающую преимущественно явления такого рода, в последнее время называют физико-химической биологией.
  2. Взаимодействия молекул, завершающиеся изменением их ковалентной структуры, т. е. собственно химические процессы. Именно совокупность этих процессов обычно называют метаболизмом (metabole — изменение, превращение).

Большинство химических реакций протекают в организме только в присутствии катализаторов. Биологические катализаторы — это вещества белковой природы, которые принято называть ферментами или энзимами. Ферменты катализируют химические реакции с образованием нековалентных связей между ферментом и субстратом, изменение конформации и др.

  • Перенос веществ. Существуют разные механизмы и маршруты транспорта веществ в организме.
    1. Транспорт с циркулирующей жидкостью по кровеносным и лимфатическим сосудам. Это механический процесс. Однако многие вещества транспортируются в форме соединений со специальными транспортными белками, подобно переносу кислорода в форме Hb·О2. В крови имеются транспортные белки для переноса многих соединений — гормонов, витаминов, липидов, ионов металлов и др. Образование и распад комплекса транспортного белка с переносимым веществом — это обычно физико-химические процессы, не связанные с изменением ковалентной структуры веществ.

    Трансмембранный перенос как путем простой диффузии, так и с участием переносчиков представляет собой физико-химический процесс — основу всех важнейших процессов организма на молекулярном уровне.

  • I. Поступление веществ из среды в организм (в результате питания, дыхания), их переваривание — приведение к состоянию, в котором они могут проникнуть во внутреннюю среду и, собственно всасывание

    II. Перемещения и превращения веществ в организме (промежуточный обмен)

    Промежуточный обмен (или метаболизм) — превращение веществ в организме с момента поступления их в клетки до образования конечных продуктов обмена, т. е. совокупность химических реакций, протекающих в живых клетках и обеспечивающих организм веществами и энергией для его жизнедеятельности, роста, размножения. Это наиболее сложная часть обмена веществ.

    Попав внутрь клетки, питательное вещество метаболизируется — претерпевает ряд химических изменений, катализируемых ферментами. Определенная последовательность таких химических изменений называется метаболическим путем, а образующиеся промежуточные продукты — метаболитами. Метаболические пути могут быть представлены в форме карты метаболизма.

    Это вспомогательные пути образования энергии из глюкозы (или других моносахаридов) и гликогена при распаде их до лактата (в анаэробных условиях) или до СО2 и Н2О (в аэробных условяих).

  • Пентозофосфатный путь (гексозомонофосфатный или фосфоглюконатный шунт). По имени ученых, сыгравших основную роль в его описании, пентозофосфатный цикл называют циклом Варбурга-Диккенса-Хорекера-Энгельгарда. Этот цикл является ответвлением (или шунтом) гликолиза на стадии глюкозо-6-фосфата.
  • Анаболические пути углеводов

    • Глюконеогенез (новообразование глюкозы). Возможен во всех тканях организма, главное место — печень.
    • Гликогеногенез (биосинтез гликогена). Происходит во всех тканях организма (может быть исключение составляют эритроциты), особенно активно протекает в скелетных мышцах и печени.

    Анаболический путь липидов

    • Синтез жирных кислот (насыщенных и ненасыщенных). В тканях млекопитающих возможно только образование моноеновых жирных кислот (из стеариновой — олеиновая, из пальмитиновой — пальмитоолеиновая). Этот синтез происходит в эндоплазматической сети клеток печени с помощью монооксигенной цепи окисления. Остальные ненасыщенные жирные кислоты в организме человека не образуются и должны поступать с растительной пищей (в растениях образуются полиненасыщенные жирные кислоты). Полиненасыщенные жирные кислоты являются для млекопитающих незаменимыми факторами пищи.
    • Синтез триацилглицеринов. Происходит при депонировании липидов в жировой ткани или в других тканях организма. Процесс локализуется в гиалоплазме клеток. Синтезируемый триацилглицерин накапливается в виде жировых включений в цитоплазме клеток.

    Анаболический путь аминокислот

    • Синтез белков и пептидов — основной путь потребления аминокислот
    • Синтез небелковых азотсодержащих соединений — пуринов, пиримидинов, порфиринов, холина, креатина, меланина, некоторых витаминов, коферментов (никотинамид, фолиевая кислота, кофермент А), тканевых регуляторов (гистамин, серотонин), медиаторов (адреналин, норадреналин, ацетилхолин)
    • Синтез углеводов (глюконеогенез) с использованием углеродных скелетов аминокислот
    • Синтез липидов с использованием ацетильных остатков углеродных скелетов аминокислот
    • Синтез фосфолипидов. Протекает в гиалоплазме тканей, связан с обновлением мембран. Синтезированные фосфолипиды переносятся с помощью липидпереносящих белков цитоплазмы к мембранам (клеточным, внутриклеточным) и встраиваются на мсто старых молекул.

    Вследствие конкуренции между путями синтеза фосфолипидов и триацилглицеринов за общие субстраты все вещества, способствующие синтезу фосфолипидов, препятствуют отложению триацилглицеринов в тканях. Эти вещества называют липотропными факторами. К ним можно отнести структурыне компопненты фосфолипидов: холин, инозит,серин; вещество, облегчающее декарбоксилирование серинфосфатидов — пиридоксальфосфат; донор метильных групп — метионин; фолиевую кислоту и цианокобаламин, участвующих в образовании коферментов переноса метильных групп (ТГФК и метилкобаламин). Их можно использовать как лекарственные препараты, препятствующие избыточному отложению триацилглицерина в тканях (жировая инфильтрация).

    • Синтез кетоновых тел. Происходит в митохондриях печени (в других органах кетогенез отсутствует). Существует два пути: гидроксиметилглутаратный цикл (наиболее активный) и деацилазный цикл (малоактивный).
    • Синтез холестерина. Наиболее активен в печени взрослого человека. Печень участвует в распределении холестерина по другим органам и в выделении холестерина с желчью. Холестерин используется на построение биомембран в клетках, а также для образования желчных кислот (в печени), стероидных гормонов (в коре надпочечников, женских и мужских половых железах, плаценте), витамина D3, или холекальциферола (в коже).
    III. Выделение конечных продуктов обмена

    В результате метаболической деятельности во всех частях организма образуются вредные вещества которые поступают в кровь, и которые необходимо удалить. Эту функцию выполняют почки, отделяющие вредные вещества и направляющие их в мочевой пузырь, откуда затем они выводятся из организма. В процессе метаболизма принимает участие и другие органы: печень, поджелудочная железа, желчный пузырь, кишечник, потовые железы.

    Человек выделяет с мочой, калом, потом, выдыхаемым воздухом главные конечные продукты обмена веществ — СО2, Н2О, мочевину H2N — СО — NH2. В форме Н2О выводится водород органических веществ, причем организм выделяет воды больше, чем потребляет (см. табл. 24): примерно 400 г воды образуется за сутки в организме из водорода органических веществ и кислорода вдыхаемого воздуха (метаболическая вода). В форме СО2 выводятся углерод и кислород органических веществ, а в форме мочевины — азот.

    Кроме того человек выделяет и много и других веществ, но в незначительных количествах, так что их вклад в общий баланс обмена веществами между организмом и средой невелик. Однако надо отметить, что физиологическое значение выделения таких веществ может быть существенным. Например, нарушение выделения продуктов распада гема или продуктов метаболизма чужеродных соединений, в том числе лекарств, может быть причиной тяжелых нарушений обмена веществ и функций организма.

    Субстраты метаболизма — химические соединения, поступающие с пищей. Среди них можно выделить две группы: основные пищевые вещества (углеводы, белки, липиды) и минорные, поступающие в малых количествах (витамины, минеральные соединения).

    Принято различать среди пищевых веществ заменимые и незаменимые. Незаменимыми называют те пищевые вещества, которые не могут синтезироваться в организме и, следовательно, должны обязательно поступать с пищей.

    Метаболический путь — это характер и последовательность химических превращений конкретного вещества в организме. Промежуточные продукты, образующиеся в процессе превращения, называют метаболиты, а последнее соединение метаболического пути — конечный продукт.

    Химиические превращения протекают в организме непрерывно. В результате питания организма исходные вещества подвергаются метаболическим превращениям; из организма постоянно выводятся конечные продукты метаболизма. Таким образом, организм представляет собой термодинамически открытую химическую систему. Простейший пример метаболической системы — отдельная неразветвленная метаболическая цепь:

    При постоянном потоке веществ в такой системе устанавливается динамическое равновесие, когда скорость образования каждого метаболита равна скорости его расходования. Это значит, что концентрация каждого метаболита сохраняется постоянной. Такое состояние системы называют стационарным, а концентрации веществ в этом состоянии — стационарными концентрациями.

    Живой организм в каждый данный момент не отвечает приведенному определению стационарного состояния. Однако, рассматривая среднее значение его параметров за сравнительно большой промежуток времени, можно отметить их относительное постоянство и тем самым оправдать приложение понятия стационарная система к живым организмам [показать] .

    На рис. 64 представлена гидродинамическая модель неразветвленной метаболической цепи. В этом приборе высота столба жидкости в цилиндрах моделирует концентрации метаболитов a-d соответственно, а пропускная способность соединительных трубок между цилиндрами моделирует скорость соответствующих ферментативных реакций.

    При постоянной скорости поступления жидкости в систему высота столба жидкости во всех цилиндрах остается постоянной: это стационарное состояние.

    Если скорость поступления жидкости увеличится, то увеличатся и высота столба жидкости во всех цилиндрах, и скорость протекания жидкости через всю систему: система перешла в новое стационарное состояние. Аналогичные переходы происходят и в метаболических процессах в живой клетке.

    Регуляция концентрации метаболитов

    Обычно в метаболической цепи есть реакция, протекающая значительно медленнее, чем все другие реакции, — это лимитирующая стадия пути. На рисунке такую стадию моделирует узкая соединительная трубка между первым и вторым цилиндрами. Лимитирующая стадия определяет общую скорость превращения исходного вещества в конечный продукт метаболической цепи. Часто фермент, катализирующий лимитирующую реакцию, является регуляторным ферментом: его активность может изменяться при действии клеточных ингибиторов и активаторов. Таким путем обеспечивается регуляция метаболического пути. На рис. 64 переходная трубка с заслонкой между первым и вторым цилиндрами моделирует регуляторный фермент: поднимая или опуская заслонку, можно переводить систему в новое стационарное состояние, с другой общей скоростью протекания жидкости и другими уровнями жидкости в цилиндрах.

    В разветвленных метаболических системах регуляторные ферменты обычно катализируют первые реакции в месте разветвления, например реакции b —> c и b —> i на рис. 65. Этим обеспечивается возможность независимой регуляции каждой ветви метаболической системы.

    Многие реакции метаболизма обратимы; направление их протекания в живой клетке определяется расходованием продукта в последующей реакции или удалением продукта из сферы реакции, например путем экскреции (рис. 65).

    При изменениях состояния организма (прием пищи, переход от покоя к двигательной активности и др.) концентрация метаболитов в организме изменяется, т. е. устанавливается новое стационарное состояние. Однако в одинаковых условиях, например после ночного сна (до завтрака), они примерно одинаковы у всех здоровых людей; за счет действия регуляторных механизмов концентрация каждого метаболита поддерживается на характерном для него уровне. Средние значения этих концентраций (с указанием пределов колебаний) служат одной из характеристик нормы. При болезнях стационарные концентрации метаболитов изменяются, причем эти изменения часто бывают специфичными для той или иной болезни. На этом основаны многие биохимические методы лабораторной диагностики болезней.

    Различают два направления в метаболическом пути — анаболизм и катаболизм (рис. 1).

    • Анаболические реакции направлены на превращение более простых веществ в более сложные, образующие структурно-функциональные компоненты клетки, такие, как коферменты, гормоны, белки, нуклеиновые кислоты и др. Эти реакции преимущественно восстановительные, сопровождаются затратой свободной химической энергии (эндергонические реакции). Источником энергии для них служит процесс катаболизма. Кроме того, энергия катаболизма используется для обеспечения функциональной активности клетки (двигательной и других).
    • Катаболические превращения — процессы расщепления сложных молекул, как поступивших с пищей, так и входящих в состав клетки, — до простых компонентов (диоксида углерода и воды); эти реакции обычно окислительные, сопровождаются выделением свободной энергии (экзергонические реакции).

    Амфиболический путь (двойственный) — путь, в ходе которого сочетаются катаболические и анаболические превращения т.е. наряду с разрушением какого-либо соединения происходит синтез другого.

    Амфиболические пути связаны с терминальной, или окончательной, системой окисления веществ, где они сгорают до конечных продуктов (СO2 и Н2O) с образованием большого количества энергии. Кроме них конечными продуктами метаболизма являются мочевина и мочевая кислота, образующиеся в специальных реакциях обмена аминокислот и нуклеотидов. Схематически связь метаболизма через систему АТФ-АДФ и амфиболический цикл метаболитов показан на рис. 2.

    Система АТФ-AДФ (АТФ-AДФ цикл) — цикл, в котором происходит непрерывное образование молекул АТФ, энергия гидролиза которых используется организмом в различных видах работ.

    Метаболический цикл — это такой метаболический путь, один из конечных продуктов которого идентичен одному из соединений, вовлеченных в этот процесс (рис. 3).

    Анаплеротический путь — метаболический, конечный продукт которого идентичен одному из промежуточных продуктов какого-либо циклического пути. Анаплеротический путь в примере рис. 3 пополняет цикл продуктом X (анаплероз — пополнение).

    Частные и общие пути метаболизма. Воспользуемся таким примером. В городе курсируют автобусы марок X, Y, Z. Их маршруты показаны на схеме (рис. 4).

    На основе этого примера определим следующее.

    • Частный путь метаболизма — это совокупность превращений, свойственная только определенному соединению (например, углеводам, липидам или аминокислотам).
    • Общий путь метаболизма — совокупность превращений, в которые вовлекаются два и более видов соединений (например, углеводы и липиды или углеводы, липиды и аминокислоты).

    Локализация метаболических путей

    Катаболические и анаболические пути у эукариотических особей отличаются по своей локализации в клетке (таб.22.).

    Такое деление обусловлено приуроченностью ферментных систем к определенным участкам клетки (компартментализация), которая обеспечивает как сегрегацию, так и интеграцию внутриклеточных функций, а также соответствующий контроль.

    В настоящее время благодаря электронно-микроскопическим и гистохимическим исследованиям, а также методу дифференциального центрифугирования достигнуты значительные успехи в определении внутриклеточной локализации ферментов. Как видно из рис. 74, в клетке можно обнаружить клеточную, или плазменную, мембрану, ядро, митохондрии, лизосомы, рибосомы, систему канальцев и пузырьков — эндоплазматический ретикулум, пластинчатый комплекс, различные вакуоли, внутриклеточные включения и др. Главную по массе недифференцированную часть цитоплазмы клетки составляет гиалоплазма (или цитозоль).

    Установлено, что в ядре (точнее, в ядрышке) локализованы РНК-полимеразы, т. е. ферменты, катализирующие, образование мРНК. В ядре содержатся ферменты, участвующие в процессе репликации ДНК, и некоторые другие (табл. 23).

    Ферменты пентозного пути

    Ферменты активации аминокислот

    Ферменты синтеза жирных кислот

    Ферменты цикла Кребса

    Ферменты цикла окисления жирных кислот

    Ферменты биологического окисления и окислительного фосфорилирования

    Ферменты синтеза фосфолипидов, триглицеридов, а также ряд ферментов, принимающих участие в синтезе холестерина

    Связь ферментов со структурами клетки:

    • Митохондрии. С митохондриями связаны ферменты цепи биологического окисления (тканевого дыхания) и окислительного фосфорилирования, а также ферменты пируватдегидрогеназного комплекса, цикла трикарбоновых кислот, синтеза мочевины, окисления жирных кислот и др.
    • Лизосомы. В лизосомах содержатся в основном гидролитические ферменты с оптимумом pH в области 5. Именно из-за гидролитической принадлежности ферментов эти частицы названы лизосомами.
    • Рибосомы. В рибосомах локализованы ферменты белкового синтеза, в этих частицах происходят транслирование мРНК и связывание аминокислот в полипептидные цепи с образованием молекул белка.
    • Эндоплазматический ретикулум. В эндоплазматической сети сосредоточены ферменты синтеза липидов, а также ферменты, участвующие в реакциях гидроксилирования.
    • Плазматическая мембрана. С плазматической мембраной прежде всего связаны АТФ-аза, транспортирующая Na + и К + , аденилатциклаза и ряд других ферментов.
    • Цитозоль. В цитозоле (гиалоплазме) локализованы ферменты гликолиза, пентозного цикла, синтеза жирных кислот и мононуклеотидов, активирования аминокислот, а также многие ферменты глюконеогенеза.

    В табл. 23 суммированы данные о локализации важнейших ферментов и отдельных метаболических стадий в различных субклеточных структурах.

    Мультиферментные системы локализуются в структуре органелл таким образом, что каждый фермент располагается в непосредственной близости от следующего фермента данной последовательности реакций. Благодаря этому сокращается время, необходимое для диффузии промежуточных продуктов реакций, и вся последовательность реакций оказывается строго координированной во времени и пространстве. Это справедливо, например, для ферментов, участвующих в окислении пировиноградной кислоты и жирных кислот, в синтезе белка, а также для ферментов переноса электронов и окислительного фосфорилирования.

    Компартментализация обеспечивает кроме того протекание в одно и то же время химически несовместимых реакций, т.е. самостоятельность путей катаболизма и анаболизма. Так, в клетке одновременно может происходить окисление жирных кислот с длинной цепью до стадии ацетил-КоА и противоположно направленный процесс — синтез жирных кислот из ацетил-КоА. Эти химически несовместимые процессы протекают в разных частях клетки: окисление жирных кислот — в митохондриях, а их синтез вне митохондрий — в гиалоплазме. Если бы эти пути совпадали и различались лишь направлением процесса, то в обмене возникли бы так называемые бесполезные, или футильные, циклы. Такие циклы имеют место при патологии, когда возможен бесполезный круговорот метаболитов.

    Выяснение отдельных звеньев метаболизма у разных классов растений, животных и микроорганизмов обнаруживает принципиальную общность путей биохимических превращений в живой природе.

    ОСНОВНЫЕ ПОЛОЖЕНИЯ РЕГУЛЯЦИИ ОБМЕНА ВЕЩЕСТВ

    Регуляция метаболизма на клеточном и субклеточном уровнях осуществляется

    1. путем регуляции синтеза и каталитической активности ферментов.

    К таким регуляторным механизмам относятся

    • подавление синтеза ферментов конечным продуктов метаболического пути,
    • индукция синтеза одного или более ферментов субстратами,
    • модуляция активности уже присутствующих молекул ферментов,
    • регуляция скорости поступления метаболитов в клетку. Здесь ведущая роль за биологическими мембранами, окружaющими протоплазму и находящиеся в ней ядро, митохондрии, лизосомы и другие субклеточные органеллы.
  • путем регуляции синтеза и активности гормонов. Так, на белковый обмен оказывает влияние гормон щитовидной железы — тироксин, на жировой — гормоны поджелудочной и щитовидной желез, надпочечников и гипофиза, на углеводный — гормоны поджелудочной железы (инсулин) и надпочечников (адреналин). Особая роль в механизме действия гормонов принадлежит циклическим нуклеотидам (цАМФ и цГМФ).

    У животных и человека гормональная регуляция обмена веществ тесно связана с координирующей деятельностью нервной системы. Примером влияния нервной системы на углеводный обмен является так называемый сахарный укол Клода Бернара, который приводит к гипергликемии и глюкозурии.

  • Важнейшая роль в процессах интеграции обмена веществ принадлежит коре головного мозга. Как указывал И П. Павлов: «Чем совершеннее нервная система животного организма, тем она централизованнее, тем высший ее отдел является все в большей и большей степени распорядителем и распределителем всей деятельности организма. Этот высший отдел содержит в своем ведении все явления, происходящие в теле».
  • Таким образом, особое сочетание, строгая согласованность и темп протекания реакций обмена веществ в совокупности образуют систему, обнаруживающую свойства механизма обратной связи (положительной или отрицательной).

    МЕТОДЫ ИЗУЧЕНИЯ ПРОМЕЖУТОЧНОГО ОБМЕНА ВЕЩЕСТВ

    Для изучения обмена веществ применяют два подхода:

    • исследования на целом организме (эксперименты in vivo) [показать]

    Классический пример исследований на целом организме, проведенных еще в начале нашего века, составляют эксперименты Кноопа. Он изучал способ распада жирных кислот в организме. Для этого Кнооп скармливал собакам различные жирные кислоты с четным (I) и нечетным (II) числом атомов углерода, в которых один атом водорода в метильной группе был замещен на фенильный радикал С6Н5:

    В первом случае с мочой собак всегда выводилась фенилуксусная кислота С6Н5-СН2-СООН, а во втором — бензойная кислота С6Н5-СООН. На основании этих результатов Кнооп сделал вывод, что распад жирных кислот в организме происходит путем последовательного отщепления двууглеродных фрагментов, начиная с карбоксильного конца:

    Позднее этот вывод был подтвержден другими методами.

    По существу в этих исследованиях Кнооп применил метод мечения молекул: он использовал в качестве метки фенильный радикал, не подвергающийся изменениям в организме. Начиная примерно с 40-х годов XX в. получило распространение применение веществ, молекулы которых содержат радиоактивные или тяжелые изотопы элементов. Например, скармливая экспериментальным животным разные соединения, содержащие радиоактивный углерод ( 14 С), установили, что все атомы углерода в молекуле холестерина происходят из углеродных атомов ацетата:

    Обычно используются либо стабильные изотопы элементов, отличающиеся по массе от широко распространенных в организме элементов (обычно тяжелые изотопы), либо радиоактивные изотопы. Из стабильных изотопов чаще используют изотопы водорода с массой 2 (дейтерий, 2 Н), азот с массой 15 ( 15 N), углерод с массой 13 ( 13 С) и кислород с массой 18 ( 18 C). Из радиоактивных изотопов применяются изотопы водорода (тритий, 3 Н), фосфора ( 32 Р и 33 Р), углерода ( 14 С), серы ( 35 S), йода ( 131 I), железа ( 59 Fe), натрия ( 54 Na) и др.

    Пометив при помощи стабильного или радиоактивного изотопа молекулу исследуемого соединения и введя его в организм, определяют затем меченые атомы или содержащие их химические группы и, открыв их в определенных соединениях, делают заключение о путях превращения меченого вещества а организме. С помощью изотопной метки можно также установить время пребывания вещества в организме, которое с известным приближением характеризует биологический период полураспада, т. е. время, за которое количество изотопа или меченого соединения уменьшается вдвое, или получить точные сведения относительно проницаемости мембран отдельных клеток. Изотопы применяются также, чтобы установить, является ли данное вещество предшественником или продуктом распада другого соединения, а также определить скорость обновления тканей. Наконец, при существовании нескольких путей обмена веществ можно определить, какой из них превалирует.

    В исследованиях на целых организмах изучают и потребности организма в пищевых веществах: если устранение из рациона какого-либо вещества приводит к нарушению роста и развития или физиологических функций организма, значит, это вещество является незаменимым пищевым фактором. Сходным образом определяются и необходимые количества пищевых веществ.

    При удалении органов имеются два объекта исследования: организм без удаленного органа и изолированный орган.

    Изолированные органы. Если в артерию изолированного органа вводить раствор какого-либо вещества и анализировать вещества в жидкости, вытекающей из вены, то можно установить, каким превращениям подвергается это вещество в органе. Например, таким путем было найдено, что печень служит главным местом образования кетоновых тел и мочевины.

    Сходные опыты можно проводить на органах без их выделения из организма (метод артерио-венозной разницы): в этих случаях кровь для анализа отбирают с помощью канюль, вставленных в артерию и вену органа, или с помощью шприца. Таким путем, например, можно установить, что в крови, оттекающей от работающих мышц, увеличена концентрация молочной кислоты, а протекая через печень, кровь освобождается от молочной кислоты.

    Срезы — это тонкие кусочки тканей, которые изготовляются с помощью микротома или просто бритвенного лезвия. Срезы инкубируют в растворе, содержащем питательные вещества (глюкозу или другие) и вещество, превращения которого в клетках данного типа хотят выяснить. После инкубации анализируют продукты метаболизма исследуемого вещества в инкубационной жидкости.

    Метод тканевых срезов впервые был предложен Варбургом в начале 20-х годов. C помощью такой методики можно изучать тканевое дыхание (потребление кислорода и выделение углекислоты тканями). Существенным ограничением в изучении метаболизма в случае применения тканевых срезов являются клеточные мембраны, которые — чаще действуют как барьеры между содержимым клетки и «питательным» раствором.

    Гомогенаты — это бесклеточные препараты. Их получают путем разрушения клеточных мембран растиранием ткани с песком или в специальных приборах — гомогенизаторах (рис. 66). В гомогенатах нет барьера непроницаемости между добавляемыми субстратами и ферментами.

    Разрушение клеточных мембран делает возможным непосредственный контакт между содержимым клетки и добавленными соединениями. Это дает возможность установить, какие ферменты, коферменты и субстраты имеют значение для исследуемого процесса.

    Фракционирование гомогенатов. Из гомогената можно выделить субклеточные частицы как надмолекулярные (клеточные органеллы), так и отдельные соединения (ферменты и другие белки, нуклеиновые кислоты, метаболиты). Например, с помощью дифференциального центрифугирования можно получить фракции ядер, митохондрий, микросом (микросомы — это фрагменты эндоплазматического ретикулума). Эти органеллы различаются размерами и плотностью и поэтому осаждаются при разных скоростях центрифугирования. Использование изолированных органелл позволяет изучать процессы обмена веществ, связанных с ними. Например, для изучения путей и механизмов синтеза белка используются изолированные рибосомы, а для исследования окислительных реакций цикла Кребса или цепи дыхательных ферментов служат митохондрии.

    После осаждения микросом в надосадочной жидкости остаются растворимые компоненты клетки — растворимые белки, метаболиты. Каждую из этих фракций можно разными методами фракционировать дальше, выделяя составляющие их компоненты. Из выделенных компонентов можно реконструировать биохимические системы, например простую систему «фермент + субстрат» и такие сложные, как системы синтеза белков и нуклеиновых кислот.

    Использование с целью интеграции высоко очищенных ферментов и коферментов. Например, с помощью данного метода стало возможным полностью воспроизвести систему брожения, которая имеет все существенные признаки брожения дрожжей.

    Разумеется, эти методы имеют ценность только как этап, необходимый для решения конечной цели — понимания функционирования целого организма.

    ОСОБЕННОСТИ ИЗУЧЕНИЯ БИОХИМИИ ЧЕЛОВЕКА

    В молекулярных процессах разных организмов, населяющих Землю, имеется далеко идущее сходство. Такие фундаментальные процессы, как матричные биосинтезы, механизмы трансформации энергии, основные пути метаболических превращений веществ примерно одинаковы у организмов от бактерий до высших животных. Поэтому многие результаты исследований, проведенных с кишечной палочкой, оказываются применимыми и к человеку. Чем больше филогенетическое родство видов, тем больше общего в их молекулярных процессах.

    Подавляющую часть знаний о биохимии человека получают таким путем: исходя из известных биохимических процессов у других животных, строят гипотезу о наиболее вероятном варианте данного процесса в организме человека, а затем проверяют гипотезу прямыми исследованиями клеток и тканей человека. Такой подход позволяет проводить исследования на небольшом количестве биологического материала, получаемого от человека. Чаще всего используют ткани, удаляемые при хирургических операциях, клетки крови (эритроциты и лейкоциты), а также клетки тканей человека, выращиваемые в культуре in vitro.

    Изучение наследственных болезней человека, необходимое для разработки эффективных методов их лечения, одновременно дает много информации о биохимических процессах в организме человека. В частности, врожденный дефект фермента приводит к тому, что в организме накапливается его субстрат; при изучении таких нарушений обмена иногда открывают новые ферменты и реакции, количественно незначительные (поэтому они и не были замечены при изучении нормы), которые имеют, однако, витальное значение.

    Обратите внимание! Диагностика и лечение виртуально не проводятся! Обсуждаются только возможные пути сохранения вашего здоровья.

    Стоимость 1 часаруб. (с 02:00 до 16:00, время московское)

    С 16:00 до 02:р/час.

    Реальный консультативный прием ограничен.

    Ранее обращавшиеся пациенты могут найти меня по известным им реквизитам.

    Заметки на полях

    Нажми на картинку —

    Просьба сообщать о неработающих ссылках на внешние страницы, включая ссылки, не выводящие прямо на нужный материал, запрашивающие оплату, требующие личные данные и т.д. Для оперативности вы можете сделать это через форму отзыва, размещенную на каждой странице.

    Ссылки будут заменены на рабочие или удалены.

    Остался неоцифрованным 3-й том МКБ. Желающие оказать помощь могут заявить об этом на нашем форуме

    В настоящее время на сайте готовится полная HTML-версия МКБ-10 — Международной классификации болезней, 10-я редакция.

    Желающие принять участие могут заявить об этом на нашем форуме

    Уведомления об изменениях на сайте можно получить через раздел форума «Компас здоровья» — Библиотека сайта «Островок здоровья»

    Выделенный текст будет отправлен редактору сайта.

    не должна использоваться для самостоятельной диагностики и лечения, и не может служить заменой очной консультации врача.

    Администрация сайта не несёт ответственности за результаты, полученные в ходе самолечения с использованием справочного материала сайта

    Перепечатка материалов сайта разрешается при условии размещения активной ссылки на оригинальный материал.

    © 2008 blizzard. Все права защищены и охраняются законом.

    Источник: http://bono-esse.ru/blizzard/A/Posobie/AFG/OWw/ow.html

    Этапы метаболизма

    ×